Raw Milk Quality Tests – Do They Predict Fluid Milk Shelf-life

or

Is it time for new tests?

Martin Wiedmann
Milk Quality Improvement Program
November 3, 2011
Fluid milk shelf life

• **What defines shelf life**
 – Microbiological criteria
 • Time until regulatory limit is reached: 20,000 CFU/ml
 – Sensory quality/consumer acceptance ("the ultimate shelf life test")

• **What affects shelf life**
 – **Raw milk quality** *(presence of bacteria, enzymes, and off flavors that are not eliminated by pasteurization)*
 – Post-pasteurization microbial contamination and chemical degradation
 – Post-pasteurization handling (e.g., temperature, kight exposure)
Microbial quality of raw milk

• Sources of bacteria in raw milk include:
 – Natural flora of healthy udder
 – Flora of mastitic cows
 – Exterior of cow
 – Dairy barn environment, air, water
 – Equipment milk contact surfaces

• Bacterial growth in raw milk influence by:
 – Milk residue on equipment
 – Prolonged milking time
 – Milk storage time/temperature
Raw Milk Quality

Important Types of Bacteria in Raw Milk

• **Cause Spoilage**
 - fermentative/acid producers (LAB - lactic acid bacteria; coliforms)
 - proteolytic, lypoletic, etc, (breakdown proteins, fats, etc.)
 - gas producers (coliform bacteria; some LAB)

• **Grow under refrigeration**
 - psychrotolerant (e.g., Pseudomonas)

• **Survive pasteurization**
 - thermoduric or thermo-tolerant
 - includes spore-formers, some psychrotolerant species and strains

• **Cause mastitis infections in cows**
 - Staphylococcus, Streptococcus, coliforms, others
Traditional raw milk quality tests include:

- Standard Plate Count (SPC)
- Psychrotrophic Bacteria Count (PBC)
- Coliform Count (CC)
- Laboratory Pasteurization Count (LPC)
- Preliminary Incubation Count (PI)
- Somatic Cell Count (SCC)
Microbiological Tests Used as Indicators of Pasteurized Milk Shelf-Life

• Raw milk tests:
 – PI count
 • 13°C/18 h pre-incubation
 – Lab pasteurization count
 • 62.8°C/30 min pasteurization
 – HR3 test

• Pasteurized milk tests:
 – Moseley keeping quality
 • SPC obtained for fresh samples and samples stored at 7°C for 5 to 7 days
 – HR1, HR2 and HR3 test
 – PI count
 • 13°C/18 h incubation
 – MicroFoss
Results from raw milk microbiological tests do not predict the shelf-life performance of commercially pasteurized fluid milk

N. H. Martin, M. L. Ranieri, S. C. Murphy, R. D. Ralyea, M. Wiedmann, and K. J. Boor
Milk Quality Improvement Program, Department of Food Science, Cornell University, Ithaca, NY 14853
Study Goals

• Measure statistical correlations between raw milk microbiological tests and pasteurized milk shelf life as defined by both sensory evaluation and microbiological evaluation
Study Design

- Raw milk and corresponding 2% pasteurized milk samples were collected once a month for 12 months from four NYS processors (with the exception of plant C, which closed after month 7)
Study Design

• Raw milk was evaluated using the following tests:
 – Prior to PI incubation:
 • Somatic Cell Count (SCC),
 • Psychrotrophic Bacteria Count (PBC)
 • Ropy Milk Test
 • Spore Pasteurization (SP) (80°C/12min)
 – Both before and after PI incubation:
 • SPC,
 • Coliform
 • Laboratory Pasteurization (LP 63°C/30min)
 • Vogel-Johnson medium (Staphylococci)
 • Edwards medium (Streptococci)
 • Crystal Violet Tetrazolium agar (CVTA) (Gram Negatives)
• Bacterial isolates were collected from SP, PBC, LP (from both before and after PI incubation), and SPC (before and after incubation)
Raw Milk Silo/Tank Samples

Ropy Milk Test

Day Zero Plating

- **SP** 80°C/12m
- **LP** 63°C/30m
- PBC
- SPC

- Temp at time of sampling
- Held at 6°C and plated over shelf-life
- Held at 6°C and plated over shelf-life

Day One Plating

- SPC
- LP

- PI
- SCC
- VJ
- CVTA
- Edwards
- Coliform

- Time held in tank/silo recorded

Red boxes indicate samples from which isolates were collected
Raw Milk Study Design

• Corresponding 2% pasteurized milk from processors were evaluated as follows:
 – SPC and coliform testing performed on days initial, 7, 10, 14, 17 and 21 post-pasteurization and storage at 6°C
 – Sensory evaluation performed on days initial, 10, 14 and 17 post-pasteurization
 – Isolates collected either when the milk sample reached the PMO limit for pasteurized milk (20,000 cfu/mL) or on the last day of the study (21 d post-pasteurization)
 • Data were used to identify post-pasteurization contamination (PPC)
Raw Milk Study Plant Processing Parameters

<table>
<thead>
<tr>
<th>Plant</th>
<th>Temperature (°F)</th>
<th>Time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>170</td>
<td>25</td>
</tr>
<tr>
<td>B</td>
<td>176.5</td>
<td>33</td>
</tr>
<tr>
<td>C</td>
<td>176</td>
<td>30</td>
</tr>
<tr>
<td>D</td>
<td>171.7</td>
<td>30</td>
</tr>
</tbody>
</table>
Results–average quality parameters by plant

Log cfu/mL

Raw SPC
PI
Day 17 SPC
Day 17 LP

Day 17 Sensory Score

NS

Plant A
Plant B
Plant C
Plant D

Sensory Score
Results – correlation between day 17 SPC and PI count

\[R^2 = 0.2416 \]

\[R^2 = 0.1973 \]
Results – correlation between day 17 sensory score and PI count

![Graph showing the correlation between day 17 sensory score and PI count with different linear regressions for samples with and without evidence of PPC.](image)

- Linear (All Samples): $R^2 = 0.078$
- Linear (Samples With No Evidence of PPC): $R^2 = 0.106$
- Samples With Evidence of PPC
- Samples With No Evidence of PPC
Results – correlation between day 17 and day 21 LPC and PI count
Study Results – Summary of all tests

<table>
<thead>
<tr>
<th>Raw milk tests</th>
<th>R² Values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D17 SPC</td>
</tr>
<tr>
<td>SCC</td>
<td>0.0221</td>
</tr>
<tr>
<td>SP</td>
<td>0.0031</td>
</tr>
<tr>
<td>Edwards</td>
<td>0.0092</td>
</tr>
<tr>
<td>VJ</td>
<td>0.0011</td>
</tr>
<tr>
<td>LP</td>
<td>0.0299</td>
</tr>
<tr>
<td>Raw SPC</td>
<td>0.0544</td>
</tr>
<tr>
<td>PBC</td>
<td>0.1280</td>
</tr>
<tr>
<td>CVTA</td>
<td>0.1238</td>
</tr>
<tr>
<td>Coliform</td>
<td>0.1301</td>
</tr>
<tr>
<td>PI</td>
<td>0.2416</td>
</tr>
<tr>
<td>ΔPI</td>
<td>0.1807</td>
</tr>
</tbody>
</table>
Study Conclusions

• None of the tests commonly used for raw milk screening have the ability to predict the bacterial or sensory quality of pasteurized milk

• Processing plant factors, such as post-pasteurization contamination and processing parameters (e.g., temperature) play a large role in pasteurized fluid milk quality

• New approaches are needed
 – Cold-growing spore-forming organisms, such as *Paenibacillus*, that are known to limit the shelf life of pasteurized milk are a logical target to pursue
Paenibacillus spp.

- Gram-positive, aerobic or facultatively anaerobic, rod-shaped sporeforming bacteria
- *Paenibacillus* only recently recognized as distinct genera from *Bacillus* (*Paeni* translates to ‘almost’)
- Spores can survive multiple stresses including: broad ranges of pH, temperature and water activities
- Commonly isolated by heat treatment (80°C for 12 min) to destroy non-spore forming microbes and stimulate spore germination
- Found in soil, rhizosphere, and insect larvae
- Used in a broad range of industrial applications for:
 - Production of extracellular degrading enzymes
 - Antimicrobial and antifungals
 - Biofertilizers and biopesticides of root pathogens
- Genome of *P. vortex* sequenced to better understand social behavior

Sirota-Madi et al., 2010
Diversity of Microbes in Milk

Table 4. Summary of bacterial isolates collected from commercial fluid milk samples throughout shelf life

<table>
<thead>
<tr>
<th>Bacterial isolate</th>
<th>initial day</th>
<th>day 7</th>
<th>day 14</th>
<th>day 17</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paenibacillus</td>
<td>1</td>
<td>11</td>
<td>33</td>
<td>30</td>
<td>75</td>
</tr>
<tr>
<td>Bacillus</td>
<td>26</td>
<td>15</td>
<td>14</td>
<td>8</td>
<td>63</td>
</tr>
<tr>
<td>amylolyticus</td>
<td>0</td>
<td>3</td>
<td>6</td>
<td>5</td>
<td>14</td>
</tr>
<tr>
<td>Bacillus cereus</td>
<td>6</td>
<td>7</td>
<td>4</td>
<td>1</td>
<td>18</td>
</tr>
<tr>
<td>licheniformis</td>
<td>11</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>mycoides</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>stearothermophilus</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>pumilus</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>lentus</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>circulans</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>subtilis</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Microbacterium lacticum</td>
<td>16</td>
<td>10</td>
<td>1</td>
<td>0</td>
<td>27</td>
</tr>
<tr>
<td>Micrococcus varians</td>
<td>4</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>Gram-negatives</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>Unidentifiable</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>TOTAL</td>
<td>49</td>
<td>44</td>
<td>49</td>
<td>47</td>
<td>189</td>
</tr>
</tbody>
</table>

Bacillus and *Paenibacillus* spp. predominate in fluid milk when post-pasteurization contamination is controlled.

Fromm and Boor, 2004
Sporeformer life-cycle

Adapted from Errington, 2010

- Germination
- Activation
- Resistant to:
 - Heat
 - Pressure
 - Chemicals

Vegetative Cycle

Sporulation

Product Spoilage
Class “Bacilli”

Many endospore forming bacteria

Genetic diversity allows survival in wide range of environments

Ludwig et al., 2009
1. Plate sample

2. Representative colony morphologies picked from plate

3. Prepare lysate

4. Genetic target amplified with polymerase chain reaction (PCR), then sequenced
DNA Sequence Based Subtyping

5. Sequences are aligned and compared

<table>
<thead>
<tr>
<th>Isolate</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolate 1</td>
<td>CAACGTAATGGTTAAACACTGTA</td>
</tr>
<tr>
<td>Isolate 4</td>
<td>CAGCGTAATGGTAAAGACTGTA</td>
</tr>
<tr>
<td>Isolate 5</td>
<td>CAGCGTAATGGTAAAGACTGTA</td>
</tr>
</tbody>
</table>

- Traditional sequence based identification targets 16S rDNA
- Sequences can be compared to databases to identify sporeforming or other bacteria
- Sequence based identification is more reliable and faster than traditional phenotypic (biochemical) characterization
- Results for a single culture generally reported by percent similarity to top matches:
 - Example: 99.79% *Bacillus vallismortis*, 99.71% *Bacillus atrophaeus*, 99.48% *Bacillus amyloliqufaciens*
DNA Sequence Based Subtyping

- Comparison of sequences can allow for discrimination between spoilage organisms
- Level of discrimination dependent on nucleotide differences
 - 16S rDNA is good for genus identification, but may not discriminate between *Bacillus* species
 - *rpoB* provides appropriate number of polymorphisms (unique bases for a single nucleotide site) for discrimination beyond genus level

<table>
<thead>
<tr>
<th>Isolate 6</th>
<th>Isolate 7</th>
<th>Isolate 5</th>
<th>Isolate 4</th>
<th>Isolate 8</th>
<th>Isolate 11</th>
<th>Isolate 1</th>
<th>Isolate 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacillus sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

16S Sequence Comparison

<table>
<thead>
<tr>
<th>Isolate 6</th>
<th>Isolate 7</th>
<th>Isolate 5</th>
<th>Isolate 4</th>
<th>Isolate 8</th>
<th>Isolate 11</th>
<th>Isolate 1</th>
<th>Isolate 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacillus subtilis. AT2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Isolate 6</th>
<th>Isolate 7</th>
<th>Isolate 5</th>
<th>Isolate 4</th>
<th>Isolate 8</th>
<th>Isolate 11</th>
<th>Isolate 1</th>
<th>Isolate 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paenibacillus lautus AT1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

rpoB Sequence Comparison
Paenibacillus Assay – Raw Milk Screening Tool

Heat-Treat Raw Milk (80°C for 12 min)

Enrichment at 6°C (17-21 days)

Sample Enumeration (1 day)

Colony Selection and Sequence Based Identification (3 days)

Heat-Treat Raw Milk (80°C for 12 min)

Enrichment at 13°C (2 days)

Sample Enumeration and Colony Selection (1 day)

Paenibacillus Quantitative PCR (4 hours)
Overview of Quantitative *Paenibacillus* Assay

1. Raw Milk Sample Collection

2. Raw milk spore-shock: 80°C for 12 minutes to kill vegetative cells and induce spore germination

3. Enrichment (incubation) at 13°C for 48 hours

4. Bacterial DNA extraction from 1mL milk sample

5. TaqMan PCR

2uL sample added to each well with PCR reagents

96 well-plate

Visual output of Pb target amplification
Evaluation of raw milk quality

Assay predicts spoilage in 4/5 samples with *Paenibacillus* growth to over 1×10^6 cfu/mL.

3 samples approached 1×10^6 cfu/mL but were not detected. Spoilage determined to be *B. weihenstephanensis* (2 samples) and *Paenibacillus* (1 sample).

16 of 16 raw milk samples with low bacterial growth (< 20,000 cfu/mL) were not detected with assay (no false positives).
Conclusions

• Spores are an important hurdle to the extension of shelf-life and quality of dairy products
 – Only some sporeformers can grow at refrigeration temperatures
• With a high quality raw milk supply traditional raw milk tests have limited value
• There is a need for new tests in the dairy industry for both raw milk and shelf life prediction of finished products